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An adaptive psychometric procedure that places each trial at the current most probable Bayes-
ian estimate of threshold is described. The procedure takes advantage of the common finding
that the human psychometric function is invariant in form when expressed as a function of log
intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any

computer.

A psychometric function describes the relation be-
tween some physical measure of a stimulus and the
probability of a particular psychophysical response.
The physical measure is usually stimulus strength,
and the response is *‘yes”’ (in a yes/no experiment)
or *“‘correct’” (in a forced-choice experiment). More
generally, there are several possible responses, each
with its own psychometric function {e.g., in a rating
scale experiment). Psychometric procedures are ways
of testing the observer so as to gain information about
the psychometric function. The advantages of adap-
tive procedures, which make use of previous responses
to guide further testing, have been discussed by nu-
merous authors (Cornsweet, 1962; Levitt, 1971;
Taylor & Creelman, 1967; Wetherill & Levitt, 1965).

Because trials are more effective when they are
judiciously placed, an adaptive procedure will be
more efficient the more it makes intelligent use of
available information. This information is of two
sorts: that derived from previous trials (data), and
that drawn from the memory of the experimenter,
published reports, and so on (prior knowledge). Prior
knowledge may be further divided into information
about the shape of the psychometric function and
knowledge about threshold in the particular condi-
tion under study. Several recent methods make effi-
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cient use of the data and of knowledge about the
shape of the psychometric function by calculating
after each trial a maximum likelihood estimate of
threshold (Hall, 1968; Kiein, 1981; Pavel, 1981;
Pentland, 1980; Watson & Pelli, 1979). Our proce-
dure, which we have dubbed QUEST, also makes
use of prior knowledge about the location of thresh-
old.

Assumptions
We embody our information about the shape of
the psychometric function in an assumption.

(1) The psychometric function has the same shape
under all conditions when expressed as a func-
tion of log intensity. From condition to condi-
tion, it differs only in position along the log
intensity axis. This position is set by @ param-
eter, T, the threshold, also expressed in units
of log intensity,

This remarkable property of the psychometric func-
tion has been noted by numerous authors (Green &
Luce, 1975; Nachmias, 1981; Roufs, 1974; Watson,
1979). It will allow us to describe any particular psy-
chometric function, pr(x), characterized by thresh-
0ld T, in terms of a canonical form W(x}, by the relation

pr(x) = ¥(x-T), 9y

where x is log intensity. The parameter T may be
chosen as any convenient landmark in the function
¥, for example, the 75% point, but we will recommend
a particular landmark below. As we shall see, this
constraint on the form of the psychometric function
greatly simplifies what would otherwise be complex
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calculations. Although this assumption appears to be
upheld under most conditions, it may fail under some
conditions (see Nachmias, 1981, and Massof, 1981,
for possible examples). This is no great problem, how-
ever, since such a failure may be readily detected in
the data, Furthermore, simulations suggest that mod-
est departures from this assumption reduce efficiency
by only modest amounts.

(2) The parameter T of the psychometric function
does not vary from trial to trial.

This assumption allows us to use @/l previous trials
to estimate T and to guide further testing. This con-
trasts with most simple procedures, which select the
next test point on the basis of only a small number
of previous trials. When this assumption is not valid,
for example, during the course of adaptation, our
method is not appropriate, but such circumstances
generally require extraordinary measures.

(3) Individual trials are statistically independent.

This is a conventional assumption of psychometric
methods. It can usually be insured by interleaving
the testing of several different psychometric func-
tions, either of the same or of different stimuli,

Theory

First we consider the representation of prior infor-
mation. Beyond what is embodied in the assumptions
above, this information takes the form of knowledge
about the value of threshold in the condition being
investigated. This may be derived from previous ex-
periments, hunches, and the like. We represent this
knowledge by the prior probability density function
(pdf) of threshold, fr(T). This specifies, for each
possible intensity, the a priori probability that thresh-
old lies at that point. Typically, this might be a broad
Gaussian or rectangular distribution centered on Tyigr,
the best guess of the location of threshold.

The second source of information is the set of trials
collected thus far. Let us denote these data by the
letter D, The information contained in the data may
be expressed in the form of a likelihood function,
fpir(D | T), which is the pdf of the data conditional
upon T, This information may be combined with the
prior pdf by Bayes’ rule to form the posterior pdf,

fT(T)fQ!T(D | T)

(T | D) = == @

The function fp{D) is the prior pdf of the data. For
a particular set of data, this is a constant which, for
most purposes, need not be computed. When neces-
sary, its value may be obtained from the relation

fp@) = [ (D) fpr(D | THT. )

The posterior pdf contains glf of the available in-
formation about threshold: assumptions, prior es-
timate, and data. It forms a natural basis on which
to estimate threshold and on which to select the place-
ment of the next trial. Note that the most probable
estimates of threshold is simply the mode (location
of the peak) of the posterior pdf, which we represent
by Tpog- If the prior pdf is divided out, what remains
is the likelihood function, and its mode is the maxi-
mum likelihood estimate of threshold, which we
represent by Tije.

Priors and prejudice. In deciding what use to make
of prior information, we confront a dilemma. On the
one hand, we wish to maximize the effectiveness of
each trial, and this can only be done by making use
of prior information. On the other hand, we do not
want to prejudice the experimental outcome, as we
will if we allow prior information to influence the
final estimate of threshold, QUEST adopts the fol-
lowing solution. Prior information (in the form of
the prior pdf) is used along with the data (in the form
of the likelihood function) to guide the placement
of trials. But, in deciding when to terminate the ex-
periment and in producing a final estimate of thresh-
old, we divide out the prior density and use only the
likelihood function.

A placement rule. Where do we place the next trial?
To estimate the position of the psychometric func-
tion, the ideal placement of each trial is at the value
of x which minimizes the quantity

P01 ~pr{x)]
[dpr(x)/dx]*

Note that this ideal sweat factor (Taylor, 1971) is the
square of the ratio of the binomial standard devia-
tion and the slope of the psychometric function at the
point in question. For convenience, we define T as
the point at which this quantity is minimized. How-
ever, to place trials at this ideal point we would need
to know T before we could estimate it. Since we are
aware of no general solution to the problem of where
to place the next trial, QUEST adopts an intuitively
appealing procedure: it places the next trial at the
current most probable estimate of T. In other words,
the trial is placed at Tpog, the mode of the posterior
pdf.

Practice

In the preceding section we developed the idea of
the posterior pdf of threshold, and argued that it is
the appropriate basis on which to estimate threshold
and to position further trials. Here we develop a sim-



ple and fast method of computing the posterior pdf.
The method is sufficiently rapid for it to be com-
puted after every trial without noticeably slowing the
progress of the experiment,

We begin by considering the three terms on the
right side of Equation 2. The last term, fp(D), can
be derived from the product of the first two, as shown
by Equation 3. Thus, afl the information about the
posterior pdf is contained in the product of the first
two terms, fp(T)fpp(D | T). This product is equal to
the joint density of T and D, fy p(T,D).

Furthermore, since all the information about the
posterior pdf is contained in this joint density, it will
likewise be present in the log of the joint density,
which we write Q(T),

Q(T) = Infr(T) + Infipp(D | T). 4)

We call this the “‘quest function.”” Its first part, the
loge of the prior density, is supplied by the exper-
imenter at the start of the session. We turn now to the
calculation of the second part, Infpp(D | T}, which
is the log, of the likelihood function,

Following n trials, the data set (D) consists of a
sequence of responses, r; at log intensities x;, where
i=1, ..., n. Each response is either a success (r; =1)
or a failure (r;=0). The probability of a success at
log intensity x is given by the psychometric function,
psT(x}=pr(x), and the probability of a failure is
PrT(X) = 1 —pr(x). Since the responses are statistically
independent, the likelihood of the sequence of n
trials is

foe@ | T) = Hprirp(xi). (5)
i=1

Taking the log, of this function and substituting it
into Equation 4, we get as an expression for the quest
function after n trials:

Qu(T) = Infy(T) + Xlnp, (x). (6)
i=1

This expression reveals a very convenient fact: the
quest function after trial n is equal to the quest func-
tion on trial n—1, plus one or the other of the func-
tions Inpr(x,) or In[l —pp(x,)], depending on whether
the trial was a success or a failure. This convenience
is increased when we note that the two possible ad-
dends need not be recomputed for each value of T,
but merely displaced, since, from Equation 1,

Inp(x) = InW(x-T)

6]
In[l - pr(x)] = In[1 —¥(x - T)}.
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To emphasize this point, we define the success and
failure functions,

S(x) = In¥(—x)

®
F(x) = In[1 - W(—x)].

The development so far can then be summarized
by the equations
S(T—x,) if success
Qu(T) = Q,_;(T) +
F(T—x;) if failure (9)
Qu(T) = Inf(T)

These equations show how the quest function is ac-
cumulated over the course of trials. If trial n is a suc-
cess, we shift the success function horizontally a dis-
tance x,, and add it point by point to the existing quest
function, Q, _{(T). If the trial is a failure, we shift
and add the failure function instead. Before any trials
are collected, the quest function is just the log, of the
prior density.

Finally, we note that, in practice, the psychometric
function is tested at only a finite number of intensi-
tics. Here we suppose that possible test intensities
are spaced at intervals of Ax (the grain) along the log
intensity axis. Since we will specify intensity only in
increments of Ax, it will be sufficient to evaluate Q(T)
only at these possible intensities. Using square brackets
to enclose the index of a function sampled at inter-
vals of Ax, we can rewrite Equation 9 in the form

S[i—k] if success
Quli] = Qu_,[jl + (10)
F[j - k] if failure
where T=T, and x=xy. In other words, the quest
function can be obtained after each trial by simply
displacing, by k values, a table of values of the suc-
cess or failure function and adding it to the existing
table of values of the quest function, The tables of
success and failure functions should, of course, be
calculated prior to the experiment.

Termination rules. A natural termination rule is to
stop when a confidence interval for the location of
threshoid is smaller than a specified size. This inter-
val may be constructed in the following way. The
quest function, minus the log, of the prior density,
is the log, of the likelihood function of T. Calling
this function L(T),

Ly(T) = Qu(T} - Qu(T). an

Let Tjjxe be the location of the maximum of this func-
tion, which is the maximum likelihood estimate of
T. To test whether any particular value of T, say T;,



116 WATSON AND PELLI

is an acceptable estimate of threshold, we may use
the ratio of likelihoods of this constrained hypothesis,
T =Tj, and an unconstrained hypothesis. In the latter
hypothesis, we can replace the unconstrained pa-
rameter by its maximum likelihood estimate, Ty,
(Hoel, Port, & Stone, 1971). Under certain regularity
conditions, minus two times the log, of the likelihood
ratio is asymptotically chi-square, with degrees of
freedom (df) equal to the difference in the number
of parameters in the two hypotheses (Wilks, 1962).
In this case, there is 1 df. Therefore, we can reject
any hypothesis T = T; for which

[L(Tye) — LTI = .5 X% o (12)
where a is the confidence level and df = 1. This allows
us to construct an interval outside of which the hy-
pothesis T="T; is rejected. We terminate when the
interval is less than a certain size. Note that to imple-
ment this rule only a modest number of subtractions
and comparisons are required. If L(T) is assumed to
be monotonic on either side of its peak (usually a safe
bet), then one need only perform the test at the bounds
of the desired interval. This rule observes the conven-
tion adopted in the Priors and Prejudice section above:
no prior information is used in the decision on when
1o stop.

Another possible termination rule is to stop after
a fixed number of trials. While this may sacrifice
something in efficiency, it has the advantage of sim-
plicity and fits well with the block structure of con-
ventional psychometric experiments.

The final estimate. The final estimate of threshold
produced by QUEST is Ty, the location of the peak
of L(T), following the last trial. This is the maximum
likelihood estimate of threshold based upon all the
data. Confidence limits about the final estimate may
be constructed by the method described above, Note
that both the final estimate and confidence limits
make no use of prior information.

Unbounded estimates. If an experiment consists
of a fixed number of trials, there is a small but finite
probability that the likelihood function will fail to
have a single peak, and that the range over which it
is at its maximum will include one or the other end-
point of the range of possible intensities. This out-
come will occur, for example, when every trial in the
session is correct. When this occurs, the estimate
should be discarded and a new experiment conducted.
it should be noted that a maximum likelihood estimate
can always be unbounded, no matter how the data
were collected.

An example

Many of the ideas in the preceding discussion may
be clarified through an example. To this point, we
have tried to be general, particularly as regards the

experimental task and the assumed psychometric
function. Here we consider a specific task, two-
alternative forced choice, and a specific psychometric
function based on the Weibull (1951) distribution.

In the remainder of this paper, we will express in-
tensity in decibels (dB), where 1 dB is a factor of 101/20,
Qur reasons for using this scale will become evident
below. The Weibull psychometric function may be
written

wp(x) = 1= (1 -y) exp[ - 1020 =T+9) (13)

The parameter y specifies the probability of a success
at zero intensity: for two-alternative forced choice
it is .5, for n-alternative forced choice it is n—1; for
yes-no, it is the false alarm rate. The parameter f§ spe-
cifies the “‘slope’” of the psychometric function; this
may depend somewhat on procedure and conditions
(Massof, 1981; Nachmias, 1981), but for two-
alternative forced choice it may be set to a value of
3.5. The parameter ¢ is introduced so that T will be
the ideal testing point. As noted in A Placement Rule
above, this is the point on the psychometric function
at which the ideal sweat factor is least. For two-
alternative forced choice (8=3.5, y=.5), £ should
be 1.5 dB; for yes/no (8=13.5, y=0), £ should be
1.15 dB. For any other case, € can be determined em-
pirically, With these settings, threshold intensity (T)
gives probabilities of success of .920 and .796, respec-
tively. Note that §, y, and ¢ are not free parameters,
and must be chosen before the start of the experiment,

Defining T more conventionally as the 75% correct
point for two-alternative forced choice (instead of
92%%) or the 50% point for yes/no (instead of .796)
would increase the sweat factor by a factor of 1.8 or
1.4, respectively.
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Figure 1. Three examples of a Weibull pyychometric function.
Center curve is the canonical form, flanking curves are for thresh-
olds of —4 and 4 dB. The parameters of all functions are: f=3.5,
y=.5,and §= .01,



Table 1
Table of Success and Failure Functions for a
Weibull Psychometric Function

I(x)=

x (in S(x) =
Decilels) w{x) Il %) Inf1 - wi-x))
17 SO0 693* H93*
lo 501 690 696
15 502 6RO -.697
14 503 687 700
i3 505 H84 03
12 507 —.679 —.708
11 Al —.672 —.715
10 516 H62 726
9 524 647 -.742
8 535 625 .T66
7 552 -..595 802
6 575 -.553 B36
5 608 -.497 937
4 6H53 426 1058
3 710 342 [.244)
2 779 .249 -1.511
I 853 159 --1.916
0 920 084 --2.523
| 968 .033 3432
2 L990p* S 10%

*ruvicated @t Wix) =y or ] b,

The interesting theoretical properties of the Weibull
psychometric function have been reviewed elsewhere
(Green & Luce, 1975; Nachmias, 1981; Quick, 1974);
here we note only that it is an excellent empirical de-
scription of psychometric data in a wide variety of
conditions (Nachmias, 1981; Watson, 1979).

However, this function is inaccurate in one re-
spect. It says that the probability of a failure well
above threshold is vanishingly small. But, in real life,
observers occasionally make errors regardless of how
intense the stimulus. The possibility of these blinks,
“finger mistakes,”” or whatever can be accommodated
by specifying an upper asymptote, 1 —4, to the prob-
ability of a success. The assumed psychometric func-
tion then becomes

pr(x) = min(l — 4, wp(x). (14)
The parameter d, like § and y, must be chosen before
the experiment, and should be set to the estimated
probability of a failure well above threshold. We
have typically used a value of .01. Figure 1 shows
three examples of the resulting psychometric func-
tion, one with threshold 0 dB (the canonical form)
and the other two with thresholds of —4 and 4 dB.

It is clear from the relationship between the quan-
tities x and T in Equation 13 and from examination
of Figure 1 that this psychometric function is trans-
Jation invariant on a log intensity axis, and therefore
satisfies Assumption |,

Figure 1 shows that, with a § of 3.5, the psycho-
metric function varies significantly over a range of
only about 20 dB of intensity. Qutside this range,

4.605%
Nate Paramciers are T 5 0, §= 3.5, y=.5,6 .01, qnd ¢ - 1.5.
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it is essentially constant, Simulations suggest that it is
efficient to measure at intervals of about 1/20th of
this range, or 1 dB. With this grain, the success and
failure functions can be specified by tables of 20
numbers each, outside the bounds of which each is
equal to the value at the bound. These tables are
given in Table 1 and are plotted in Figure 2. Note
that the size of the range of variation is inversely re-
lated to B. For some other 3, the grain should be scaled
accordingly.

Figure 2 illustrates the accumulation of the quest
function over a simulated sequence of trials. Panel A
shows the success and failure functions. Note that the
failure function has much larger variations than the
success function. This means that a failure tells us

0

Success
L+
- Failure A
-8 S—) L 1 L 3 1 1 i L A ' 3 VR

Log threshoid intensity (dB)

Figure 2. Construction of the quest function, The abscissa de-
notes possible values of T in steps of 1/20th of a log,, unit (1 dB).
Panel A shows the success and failure functions, In panel B, Q,
is the quest function at trinl 0, equal to the log, of the prior den-
sity. In this case, the prior density was specified as a normal dis-
tribution with a mean (T,;,) of —6 dB and a standard deviation
of 8 dB. Curve (), is the quest function after trial 16. Curve L,,
is the log, of the likelihood function of T following the 16th trial,
and is equal to the difference between Q, and Q,,. The curve labeled
1 is the quest function after a successful trinl 17 at an intensity
of —3 dB. It is obtained by shifting the success function to the left
by 3 dB and adding it to Q,,. Curve 2 is the quest function after
a failure on trial 17, obtained by shifting and adding the failure
function to Q,,.
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Figare 3. The log likelihood function L(T) following various
nombers of trials, indicated on the right. Data are from the same
simulated experiment shown in Figure 2. The true threshold is at
0 dB., The curves have been displaced vertically by arbitrary
amounts.

more about the location of threshold than does a suc-
cess. This makes sense, since, in a two-alternative
forced-choice experiment, a correct trial is quite
probable above or below threshold, while an incor-
rect response above threshold is quite improbable. In
fact, if not for the assumption that observers occa-
sionally make mistakes well above threshold (d=.01),
the failure function would rapidly fall to minus in-
finity, causing some difficulty in the subsequent com-
putations. This is a further practical reason for in-
troducing the parameter d.

We suppose that the experimenter has supplied a
Gaussian prior density with a standard deviation of
8 dB and a mean or mode (Tpyi0,) of -6 dB. The upper-
most curve in panel B shows the log,. of this density,
which also serves as the quest function before the

first trial, QuT). The quest function following the
16th trial is shown by the curve labeled Q,s. Subtract-
ing Qo(T) from Q,4(T), we get the curve labeled L,q,
which is the log likelihood function following the
16th trial.

We now apply the likelihood ratio termination rule
discussed earlier. We note that one half the chi-square
criterion for .975 confidence and 1 df is 2.51. There-
fore, we look at the width of L,4(T) a distance 2.51
down from its peak, This yields an interval of about
8 dB. If this is greater than a preestablished termina-
tion interval, we perform a 17th trial. The 17th trial
is placed at T, the peak of the quest function,
which occuors at an intensity of —3 dB. If the trial is
a success, the new quest function (labeled curve 1)
is obtained by shifting the success function horizon-
tally by —3 dB and adding it to the old (Q.s). If the
trial is a failure, the failure function is shifted and
added to Q,s, resulting in curve 2. The experiment
would continue in this way until the confidence inter-
val was less than a specified size.,

Figure 3 gives another view of the same simulated
experiment. The curves show the function L(T) fol-
lowing 4, 8, 16, 32, 64, and 128 trials. With increas-
ing numbers of trials, the maximum likelihood es-
timate of T moves closer to the true value (0), and the
confidence interval about this estimate grows nar-
rower. Note that the upper bound is always less abyrupt
than the iower bound.

A Program

To make the mechanics of the QUEST procedure
as clear as possible, we provide a small BASIC pro-
gram in Figure 4 which should run without modifi-
cation on most computers. The variable S is the stan-
dard deviation of the prior density, and D, G, and E
are d, y, amd , respectively, The variable B is 8/20,
and M is the number of trials. In lines 110-120, X
represents intensity (in dB) relative to the true thresh-
old. “LOG()” in line 120 represents log.( ). Through-
out the program, “‘T’’ represents possible values of

100 DIM P(80O),QCH0),Q0CH0),5(1,80) N N=20 N\ NZ2=2*N N\ S$=12 N\ D=.01 \ G=.% \ B=3.5/20 \ E=1.5 \ M=z32
110 FOR X=-N2 TO N2 N\ P{N2+X)=1-(1-GYREXP{(-10"(B¥(X4+E))) \ IF P{N2+X)>1-D THEN P{N2+X)=1-D

120 5(0,N2-X)=LOG{1-P(N2+X)) \ S(1,K2-X)=LOG(P(N2+X)) \ NEXT X

130 FOR T==N TG N \ QO(N+T)=—(1/3)72 \ QIN+T)=Q0(N+T) \ NEXT T

TG PRINT "Prior estimate (+/-";3;"dB)"; N\ INPUT TO N\ PRINT "Actual

150 FOR K=1 TO M

threshold”; N\ INPUT T1

160 GOSUB 220 \ R=INT(P(N2+X+TO-T1)+RND(0O)) \ PRINT "Trial”:K;"at ";X+T0;"dl has response" ;K
170 FOR T=-N TO N \ Q(N+T)=Q(N+T)+S{R,N2+T-X) \ NEXT T

180 NEXT K

190 FOR T=-N TO N \ Q(N+T)=Q(N+T)}-QO(N+T} \ NEXT T

200 GOSUB 220 \ PRINT "Maximum likelihood estimate is ";X+TO;"dB"

210 STOP

270 X=—N \ FOR T=—N TO N \ IF Q(N+T)>Q(N+X} THEN X=T

230 NEXT T \ RETURN

Figure 4. Small BASIC program to implement QUEST procedure,



threshold (in decibels) relative to the prior guess. <“T0.”
In lines 160-170, ““X’’ is the Bayesian estimate of
threshold relative to ““T0.”* The possible set{ings run
from TO—N to TO+N in steps of 1 dB. In line 160,
an observer with a threshold of TO is sitnulated. In an
actual experimental program, this instruction would
be replaced by stimulus presentation and collection
of a response from a real observer. The program has
not been optimized in any particular way, and a real
experimental program would doubtless be expanded
to accommodate several stimuli, estimate confidence
intervals, apply termination rules, and so on,

Some Extensions

Here we note some possible extensions, generaliza-
tions, or amendments to the QUEST procedure that
may be useful in some circumstances.

Final estimates, In the example given above, the
log intensity axis was specified with a grain (Ax) of
1 dB. Thus, each estimate of T will be specified only
to the nearest decibel. This may be accurate enough
for the placement of trials, but not for the final es-
timate. Two remedies are available. One is to reduce
the grain at certain times during the experiment, for
example, between blocks, However, this requires that
the quest function be evaluated for all newly intro-
duced points. A second and simpler alternative is to
use the data, after the completion of the experiment,
to derive a maximum likelihood estimate of T that is
not constrained to any particular grain. Watson
(1979) describes a simple estimation procedure for
use in this situation.

Relative placement rules. Often we wish to place
trials not at¢ threshold, but somewhere refative to
threshold. In these cases, QUEST can provide a best
estimate of threshold relative to which the trial may
be placed. For example, Levitt (1971) notes that 1o
estimate the “‘slope’’ of the psychometric function,
trials are best placed somewhat above and below T.
As a second example, we note that even when es-
timating T, observers may become unhappy if every
trial is placed at threshold. For this reason, we often
place each trial at T, plus a random value uniformly
distributed over an interval of plus and minus 2 dB.
This jitter reduces efficiency a little, but makes the
subject happier,

Rating scales. In principle, allowing more response
types should reduce the number of trials required to
obtain a given variance in the estimate of T. For ex-
ample, QUEST might be applied to a rating scale ex-
periment with n rating categories. Each type of re-
sponse (r;, i=1, ..., n) has a different psychometric
function, p, 1(x), all of which must sum to one at
each intensity.

n
Epri,'r(X) =1 for all %,

i=1
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Shape invariance is assumed for each psychometric
function. Equations 2-6 are valid for any number of
response types, and may be applied to this case in a
straightforward way,

Variable . If considerable uncertainty exists as to
the value of f# in a particular condition, this parameter
may be allowed to vary over a modest number of
fixed values. This is accomplished by concurrently
maintaining several quest functions, each associated
with a particular value of § and its own success and
failure functions. After each trial, the quest function
with the largest value identifies the most probable
of the several possible values of .

Discussion

Taylor and Creelman (1967; Taylor, 1971) have
developed a measure which allows the performance
of different psychometric procedures to be compared,
They define asymptotic efficiency as

i | peort—peol

i , (15)
h | pG)/AX]* |t
where o, is the standard deviation of the estimate
after n trials, However, this is an absolute measure
of efficiency for which a value of 1 would be achiev-
able and unsurpassable only in the limiting case,
where trials are placed so close to T that the psycho-
metric function may be treated as a straight line
through p(T). In practice, most experiments begin
(and may finish) well before that point. Consequently,
application of this measure to a practical adaptive
procedure yields an ‘‘efficiency’® which depends
upon the number of trials collected and the accuracy
of the prior estimate. It will also depend upon how
well the assumptions underlying the procedure match
the true state of affairs. With these reservations,
we note that when the simulated psychometric func-
tion is identical in shape to the assumed psychometric
function (Table 1), and the initial standard deviation
of T is 6 dB, the QUEST procedure yields an efficiency
of 84% after 128 trials. This compares favorably
with an efficiency of around 45% for the PEST pro-
cedure after 128 trials with unspecified method and
initial variance (Taylor & Creelman, 1967) and around
71% after 128 trials for Hall’s (1981) hybrid pro-
cedure simulated with four-alternative forced-choice
and 0 initial variance.

Ultimately, the best test of a procedure is actual
use. We have used the QUEST procedure in a wide
variety of psychophysical experiments for over 3
years. We have found it to be flexible, reliable, ef-
ficient, and easy to use.

REFERENCE NOTE
1. Klein, S. Rapid determination of the psychometric function.

Paper presented at the annual meeting of the American Academy
of Optometry, Orlande, Florida, December 1981,
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